101 research outputs found

    Robust automatic mapping algorithms in a network monitoring scenario

    Get PDF
    Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method-of-moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box-Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the (transformed) process. Using a case study, based on an extreme radiological events over a large area, we show how radiation data collected from monitoring networks can be analysed automatically and then used to generate reliable maps to inform decision making. We show the limitations of the methods and discuss potential extensions to remedy these

    The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa

    Get PDF
    There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p < 0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series

    Inequitable Gains and Losses from Conservation in a Global Biodiversity Hotspot

    Get PDF
    A billion rural people live near tropical forests. Urban populations need them for water, energy and timber. Global society benefits from climate regulation and knowledge embodied in tropical biodiversity. Ecosystem service valuations can incentivise conservation, but determining costs and benefits across multiple stakeholders and interacting services is complex and rarely attempted. We report on a 10-year study, unprecedented in detail and scope, to determine the monetary value implications of conserving forests and woodlands in Tanzania’s Eastern Arc Mountains. Across plausible ranges of carbon price, agricultural yield and discount rate, conservation delivers net global benefits (+US8.2Bpresentvalue,20yearcentralestimate).Crucially,however,netoutcomesdivergewidelyacrossstakeholdergroups.Internationalstakeholdersgainmostfromconservation(+US8.2B present value, 20-year central estimate). Crucially, however, net outcomes diverge widely across stakeholder groups. International stakeholders gain most from conservation (+US10.1B), while local-rural communities bear substantial net costs (-US1.9B),withgreaterinequitiesformorebiologicallyimportantforests.OtherTanzanianstakeholdersexperienceconflictingincentives:tourism,drinkingwaterandclimateregulationencourageconservation(+US1.9B), with greater inequities for more biologically important forests. Other Tanzanian stakeholders experience conflicting incentives: tourism, drinking water and climate regulation encourage conservation (+US72M); logging, fuelwood and management costs encourage depletion (-US$148M). Substantial global investment in disaggregating and mitigating local costs (e.g., through boosting smallholder yields) is essential to equitably balance conservation and development objectives

    Improving motivation among primary health care workers in Tanzania: a health worker perspective

    Get PDF
    In Tanzania access to urban and rural primary health care is relatively widespread, yet there is evidence of considerable bypassing of services; questions have been raised about how to improve functionality. The aim of this study was to explore the experiences of health workers working in the primary health care facilities in Kilimanjaro Region, Tanzania, in terms of their motivation to work, satisfaction and frustration, and to identify areas for sustainable improvement to the services they provide. The primary issues arising pertain to complexities of multitasking in an environment of staff shortages, a desire for more structured and supportive supervision from managers, and improved transparency in career development opportunities. Further, suggestions were made for inter-facility exchanges, particularly on commonly referred cases. The discussion highlights the context of some of the problems identified in the results and suggests that some of the preferences presented by the health workers be discussed at policy level with a view to adding value to most services with minimum additional resources

    Development of a modified floristic quality index as a rapid habitat assessment method in the northern Everglades

    Get PDF
    Floristic quality assessments (FQA) using floristic quality indices (FQIs) are useful tools for assessing and comparing vegetation communities and related habitat condition. However, intensive vegetation surveys requiring significant time and technical expertise are necessary, which limits the use of FQIs in environmental monitoring programs. This study modified standard FQI methods to develop a rapid assessment method for characterizing and modeling change in wetland habitat condition in the northern Everglades. Method modifications include limiting vegetation surveys to a subset of taxa selected as indicators of impact and eliminating richness and/or abundance factors from the equation. These modifications reduce the amount of time required to complete surveys and minimizes misidentification of species, which can skew results. The habitat characterization and assessment tool (HCAT) developed here is a FQA that uses a modified FQI to detect and model changes in habitat condition based on vegetation communities, characterize levels of impact as high, moderate, or low, provide predictive capabilities for assessing natural resource management or water management operation alternatives, and uniquely links a FQI with readily accessible environmental data. For application in the northern Everglades, surface water phosphorus concentrations, specific conductivity, distance from canal, and days since dry (5-year average) explained 67% of the variability in the dataset with \u3e 99.9% confidence. The HCAT approach can be used to monitor, assess, and evaluate habitats with the objective of informing management decisions (e.g., as a screening tool) to maximize conservation and restoration of protected areas and is transferable to other wetlands with additional modification

    Search for the standard model Higgs boson at LEP

    Get PDF

    Vaccine responses in newborns.

    Get PDF
    Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life
    corecore